氣體保護電弧焊加工主流類型及差異
類型 核心特點 適用場景 保護氣體
MIG 焊(熔化極) 焊絲既是電極也是填充金屬,焊接效率高 中厚板拼接、批量生產(如汽車制造) 氬氣 + 氦氣(鋁合金)、氬氣 + CO?(碳鋼)
MAG 焊(熔化極) 以 CO?或混合氣體為保護,成本較低 鋼結構、機械零部件焊接 CO?單氣體或氬氣 + CO?混合氣體
TIG 焊(非熔化極) 鎢極不熔化,需單獨添加填充焊絲,精度高 薄板焊接、精密部件(如航空航天零件)
點焊加工關鍵工藝流程
焊前準備:清理工件接觸表面的油污、鐵銹、氧化皮,保證導電良好;根據工件厚度(通常 0.5-6mm)選擇電極材質(銅合金為主)和電極頭形狀(球面、平面)。
工件定位:將待焊工件重疊放置并定位,確保接觸點貼合緊密,避免間隙過大影響導電。
加壓通電:電極施加壓力(通常 0.2-1.5MPa)夾緊工件,隨后通以短時間大電流(數千至數萬安培),使接觸點熔化形成熔核。
保壓冷卻:斷電后保持壓力 3-10 秒,讓熔核自然冷卻凝固,形成牢固焊點;避免過早卸壓導致焊點縮孔、裂紋。
焊后檢查:外觀檢查焊點是否飽滿、無飛濺、無燒穿;重要工件需檢測焊點強度(拉剪試驗)或熔核尺寸(金相分析)。
不銹鋼焊接加工的核心是通過合適的焊接方法與工藝控制,避免腐蝕失效和力學性能下降。
核心焊接方法
氬弧焊(TIG):適合薄板、精密件焊接,焊縫成形美觀,耐腐蝕性好。
熔化極氣體保護焊(MIG/MAG):效率高,適用于中厚板批量生產,需控制保護氣體純度。
焊條電弧焊(SMAW):設備簡單、操作靈活,適合現場搶修或復雜結構焊接。
關鍵工藝要點
材質匹配:選用與母材同系列的焊接材料,避免異種金屬焊接導致的腐蝕風險。
焊接環境:保持環境干燥、無粉塵,防止濕氣影響焊縫質量。
焊后處理:重要構件需進行酸洗鈍化,去除氧化皮,恢復不銹鋼的耐腐蝕性能。
常見問題及解決
熱裂紋:控制焊接電流和速度,減少熱輸入,必要時預熱母材。
氣孔:確保焊接材料干燥、保護氣體通暢,清理坡口表面油污和雜質。
晶間腐蝕:采用小線能量焊接,避免焊縫及熱影響區處于敏化溫度區間。
鎳基合金焊接加工的核心是應對高溫強度保持、耐蝕性要求及焊接熱裂紋敏感性,需嚴格控制焊接材料匹配和熱輸入,以維持其在高溫、腐蝕環境下的核心性能。
核心技術難點
高溫脆性相析出:焊接熱循環易促使晶界生成 Laves 相、σ 相、碳化物等脆性相,導致焊縫及熱影響區(HAZ)韌性下降。
熱裂紋敏感:鎳基合金(尤其是含 Nb、Ti 的合金)凝固時易因低熔點共晶物(如 NbC-Ni?Nb)形成晶間液膜,產生凝固裂紋;部分合金(如 Inconel 600)還易出現液化裂紋。
耐蝕性保持:焊接過程中合金元素(Cr、Mo、Nb 等)燒損或偏析,會降低焊縫在酸、堿、高溫氧化環境中的耐蝕性。
常用焊接方法及適用場景
TIG 焊(鎢極氬弧焊)最常用方法,適合薄板(≤5mm)及精密構件(如化工設備襯里、航空發動機燃燒室),熱輸入易控制,焊縫成形好。需用高純氬(純度≥99.99%)保護,必要時加背面保護。
MIG 焊(熔化極氬弧焊)效率高于 TIG 焊,適合中厚板(5-20mm)批量焊接(如壓力容器簡體、熱交換器管板),采用藥芯焊絲或實芯焊絲配合 Ar+He 混合氣體(增強熔深)。
埋弧焊(SAW)適合厚板(≥10mm)長直焊縫(如管道、反應器殼體),需匹配低硅、低硫焊劑(如 HJ260),避免增硅導致熱裂紋。
電子束焊 / 激光焊熱輸入極小,適合薄壁高精密構件(如核工業部件),可減少脆性相析出,但設備成本高,對裝配精度要求嚴苛。
關鍵工藝要點
焊接材料匹配:優先選用同質焊絲(如 Inconel 625 用 ERNiCrMo-3,Hastelloy C276 用 ERNiCrMo-4),確保合金元素(尤其是 Cr、Mo、Nb)含量與母材相當;異種鎳基合金焊接需選擇中間成分焊絲,避免脆化相。
熱裂紋預防:
控制熱輸入:采用小電流、高焊速(如 1mm 厚 Inconel 600 TIG 焊電流 80-100A,速度 10-15cm/min),減少熔池過熱。
降低拘束度:避免剛性固定,采用分段退焊法減少焊接應力。
焊絲微合金化:部分焊絲添加少量 B、Zr 細化晶粒,抑制晶間液膜。
焊后處理:
固溶處理:對時效強化型鎳基合金(如 Inconel 718),焊后需經 980-1060℃固溶 + 時效,溶解脆性相,恢復力學性能。
酸洗鈍化:用硝酸 + 氫氟酸混合溶液處理焊縫,去除氧化皮,恢復耐蝕性(尤其對化工用鎳基合金)。
焊前準備:用不銹鋼絲刷或機械打磨去除表面氧化皮、油污,禁止用碳鋼工具清理(避免 Fe 污染導致耐蝕性下降);焊絲需經 200-300℃烘干 1h,去除水分。
