當前,銦的主要消費領域集中在ITO靶材上,其占比高達約70%。此外,半導體制造和合金領域的需求也不容忽視,兩者合計占總消費量的24%,而其他研究領域則占據了6%。然而,由于ITO制造過程中靶材利用率僅達30%左右,導致大量剩余材料成為廢料。加之電子廢棄物的激增,銦回收已成為資源可持續利用不可或缺的一環。隨著技術進步和應用需求的增長,ITO廢料回收能有效減少原礦資源消耗,實現資源的可持續性發展。
銦靶材回收的主要任務是將銦從靶材中的其他金屬和材料中分離出來,并將其提純至高純度。回收方法包括火法、濕法和電化學法。
火法冶金工藝使用高溫熔煉和精煉來回收銦。這種方法適用于大規模回收,但存在一些缺點,如產生危險廢物、高能耗,以及可能損失有價值的銦。
濕法冶金工藝利用化學浸出劑將銦從靶材中溶解出來。這種方法比火法更環保,適用于從成分復雜的靶材中回收銦。然而,這一過程可能較為復雜,需要使用危險化學品。
電化學過程通過電流將銦從靶材中溶解和回收。這種方法也比火法更環保,可以回收較高純度的銦。但這一過程可能較為復雜,需要專門的設備和專業知識。
在分離銦和其他金屬和材料時,可以采用幾種方法,包括選擇性溶解、溶劑萃取、離子交換和沉淀。選擇性溶解使用化學浸出劑選擇性地溶解銦,而保持其他金屬和材料不變。溶劑萃取使用有機溶劑選擇性地提取銦。離子交換則通過樹脂吸附銦離子,同時留下其他離子。沉淀法使用化學試劑使銦從溶液中沉淀出來,而將其他金屬和材料留在溶液中。
提純銦的方法包括蒸餾法、電解法和區域精煉法。蒸餾通過高溫蒸發和冷凝來提純銦。電解利用電流來提純銦。區域精煉則通過移動的熔融區來提純銦。

